您的位置: 旅游网 > 社会

NIPS2017今天开启议程谷歌科学家竟

发布时间:2019-08-18 22:45:56

  NIPS 2017今天开启议程,谷歌科学家竟然组团去了450人,还都不是去玩的!

  据说,别人去NIPS 2017是这样的:

  谷歌去NIPS 2017是这样的:

  AI科技评论按:今天,人工智能领域本年度最后一个学术盛会、机器学习领域顶级会议、第31届神经信息处理系统大会(NIPS 2017)就要在加州长滩市开启了。((公众号:)AI科技评论也将亲临现场进行全程报道!)

  谷歌作为钻石赞助商,今年共有450人去参加NIPS大会,而我们知道NIPS 2017的参会人数总共有5000+,所以如果你在会场,那么放眼望去,看到的每13个人差不多就有一个是谷歌的人,并且人家这些人还都不是来玩的。

  一、活动情况1、接收论文(Accepted Papers)据了解,今年NIPS会议共有3240篇投稿论文,其中678篇入选(20.9%),40篇orals,112篇spotlights。

  在这些入选论文中,国内高校共有19篇论文入选;UC伯克利有16篇,斯坦福有20篇,MIT有20篇,而卡内基·梅隆大学则有高达32篇入选论文。是不是很牛逼?

  说真的,并不!

  谷歌有45篇入选论文,远超世界顶级的四大高校,更是远超太平洋西岸某一大国的所有高校之和。这里是谷歌入选论文列表:

  A Meta-Learning Perspective on Cold-Start Recommendations for Items

  Manasi Vartak,Hugo Larochelle, Arvind Thiagarajan

  AdaGAN: Boosting Generative Models

  Ilya Tolstikhin,Sylvain Gelly,Olivier Bousquet, Carl-Johann Simon-Gabriel, Bernhard Sch?lkopf

  Deep Lattice Networks and Partial Monotonic Functions

  Seungil You,David Ding,Kevin Canini,Jan Pfeifer,Maya Gupta

  From which world is your graph

  Cheng Li, Varun Kanade,Felix MF Wong, Zhenming Liu

  Hiding Images in Plain Sight: Deep Steganography

  Shumeet Baluja

  Improved Graph Laplacian via Geometric Self-Consistency

  Dominique Joncas, Marina Meila, James McQueen

  Model-Powered Conditional Independence Test

  Rajat Sen,Ananda Theertha Suresh, Karthikeyan Shanmugam, Alexandros Dimakis, Sanjay Shakkottai

  Nonlinear random matrix theory for deep learning

  Jeffrey Pennington,Pratik Worah

  Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice

  Jeffrey Pennington,Samuel Schoenholz, Surya Ganguli

  SGD Learns the Conjugate Kernel Class of the Network

  Amit Daniely

  SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability

  Maithra Raghu,Justin Gilmer, Jason Yosinski,Jascha Sohl-Dickstein

  Learning Hierarchical Information Flow with Recurrent Neural Modules

  Danijar Hafner,Alexander Irpan,James Davidson, Nicolas Heess

  Online Learning with Transductive Regret

  Scott Yang,Mehryar Mohri

  Acceleration and Averaging in Stochastic Descent Dynamics

  Walid Krichene, Peter Bartlett

  Parameter-Free Online Learning via Model Selection

  Dylan J Foster,Satyen Kale,Mehryar Mohri, Karthik Sridharan

  Dynamic Routing Between Capsules

  Sara Sabour,Nicholas Frosst,Geoffrey E Hinton

  Modulating early visual processing by language

  Harm de Vries, Florian Strub, Jeremie Mary,Hugo Larochelle, Olivier Pietquin, Aaron C Courville

  MarrNet: 3D Shape Reconstruction via 2.5D Sketches

  Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun,Bill Freeman, Josh Tenenbaum

  Affinity Clustering: Hierarchical Clustering at Scale

  Mahsa Derakhshan, Soheil Behnezhad,Mohammadhossein Bateni,Vahab Mirrokni, MohammadTaghi Hajiaghayi,Silvio Lattanzi,Raimondas Kiveris

  Asynchronous Parallel Coordinate Minimization for MAP Inference

  Ofer Meshi, Alexander Schwing

  Cold-Start Reinforcement Learning with Softmax Policy Gradient

  Nan Ding,Radu Soricut

  Filtering Variational Objectives

  Chris J Maddison,Dieterich Lawson,George Tucker,Mohammad Norouzi, Nicolas Heess, Andriy Mnih, Yee Whye Teh, Arnaud Doucet

  Multi-Armed Bandits with Metric Movement Costs

  Tomer Koren, Roi Livni,Yishay Mansour

  Multiscale Quantization for Fast Similarity Search

  Xiang Wu,Ruiqi Guo,Ananda Theertha Suresh,Sanjiv Kumar,Daniel Holtmann-Rice,David Simcha,Felix Yu

  Reducing Reparameterization Gradient Variance

  Andrew Miller, Nicholas Foti, Alexander DAmour,Ryan Adams

  Statistical Cost Sharing

  Eric Balkanski,Umar Syed,Sergei Vassilvitskii

  The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings

  Krzysztof Choromanski, Mark Rowland, Adrian Weller

  Value Prediction Network

  Junhyuk Oh, Satinder Singh,Honglak Lee

  REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models

  George Tucker, Andriy Mnih, Chris J Maddison,Dieterich Lawson,Jascha Sohl-Dickstein

  Approximation and Convergence Properties of Generative Adversarial Learning

  Shuang Liu,Olivier Bousquet, Kamalika Chaudhuri

  Attention is All you Need

  Ashish Vaswani,Noam Shazeer,Niki Parmar,Jakob Uszkoreit,Llion Jones, Aidan N Gomez,?ukasz Kaiser,Illia Polosukhin

  PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference

  Jonathan Huggins,Ryan Adams, Tamara Broderick

  Repeated Inverse Reinforcement Learning

  Kareem Amin, Nan Jiang, Satinder Singh

  Fair Clustering Through Fairlets

  Flavio Chierichetti,Ravi Kumar,Silvio Lattanzi,Sergei Vassilvitskii

  Affine-Invariant Online Optimization and the Low-rank Experts Problem

  Tomer Koren, Roi Livni

  Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models

  Sergey Ioffe

  Bridging the Gap Between Value and Policy Based Reinforcement Learning

  Ofir Nachum, Mohammad Norouzi,Kelvin Xu,Dale Schuurmans

  Discriminative State Space Models

  Vitaly Kuznetsov,Mehryar Mohri

  Dynamic Revenue Sharing

  Santiago Balseiro,Max Lin,Vahab Mirrokni,Renato Leme, Song Zuo

  Multi-view Matrix Factorization for Linear Dynamical System Estimation

  Mahdi Karami, Martha White,Dale Schuurmans, Csaba Szepesvari

  On Blackbox Backpropagation and Jacobian Sensing

  Krzysztof Choromanski,Vikas Sindhwani

  On the Consistency of Quick Shift

  Heinrich Jiang

  Revenue Optimization with Approximate Bid Predictions

  Andres Munoz,Sergei Vassilvitskii

  Shape and Material from Sound

  Zhoutong Zhang, Qiujia Li, Zhengjia Huang, Jiajun Wu, Josh Tenenbaum,Bill Freeman

  Learning to See Physics via Visual De-animation

  Jiajun Wu, Erika Lu, Pushmeet Kohli,Bill Freeman, Josh Tenenbaum

  2、Invited talkNIPS 2017在日期间安排了7场大会报告,其中谷歌作为钻石赞助商,其首席科学家John Platt将在4日下午5::20做首场invited talk:《Powering the next 100 years》,来讲述谷歌如何使用机器学习来解决未来的能源问题。他是这么说的:

  我的梦想就是让地球上的每一个人每年都能够用上和美国普通人一样多的能源。如果实现这个目标,那么在2100年,就需要0.2 x 10^24焦耳的能量,这是非常巨大的。

  那么人类文明如何能够获得这么多能量而同时不会导致二氧化碳含量剧增呢?为了回答这个问题,我首先要深入到电力经济学,以了解当前零碳技术的局限性。这些限制也是导致我们仍然在研究如何开发零碳技术(例如核聚变)的原因。对于核聚变,我将说明为什么发展了近70年,对它的开发仍然是一个棘手的问题,而为什么在不久的将来又可能会得到一个很好的解决方案。我还将解释我们如何使用机器学习来优化、加速核聚变的研究。

  啥,机器学习+核聚变?是的,是不是很突破脑洞极限?

  3、会议展示(Conference Demos)谷歌在NIPS上将有两场会议展示:

  1)电子屏保具有高效、强健的移动视觉

  Electronic Screen Protector with Efficient and Robust Mobile Vision

  Hee Jung Ryu,Florian Schroff

  在上通过人脸进行身份验证,探索的也有一段时间了。但是如何在有很多人的拥挤空间中确定哪张脸是你的呢?

  谷歌将在Demos中展示他们开发的DetectGazeNet,识别你只需47ms。

  2)Magenta和:实时控制浏览器中的深度生成音乐模型

  Magenta and : Real-time Control of DeepGenerative Music Models in the Browser

  Curtis Hawthorne,Ian Simon,Adam Roberts,Jesse Engel,Daniel Smilkov,Nikhil Thorat,Douglas Eck

  用深度学习来创作音乐的技术现在越来越成熟了,谷歌的团队将展示如何在浏览器的javascript环境中运行,从而让用户实时控制这些模型的生成。只需要一个浏览器,自己也能生产音乐,有没有很高端?

  4、workshops所谓workshops,就是在某一主题下若干人一起进行密集讨论的小会。NIPS 2017在8、9号两天一共安排了53个Workshops。谷歌将参加其中的28个。

  那么这和自己有什么关系呢?只能说,谷歌的众多大神将在这些workshops闪亮登场,其中就包括那位女神(微笑)。来,看看都认识哪些人……

  6th Workshop on Automated Knowledge Base Construction(AKBC) 2017

  Program Committee includes:Arvind Neelakanta

  Authors include:Jiazhong Nie,Ni Lao

  Acting and Interacting in the Real World: Challenges in Robot Learning

  Invited Speakers include:Pierre Sermanet

  Advances in Approximate Bayesian Inference

  Panel moderator:Matthew D. Hoffman

  Conversational AI - Todays Practice and Tomorrows Potential

  Invited Speakers include:Matthew Henderson,Dilek Hakkani-Tur

  Organizers include:Larry Heck

  Extreme Classification: Multi-class and Multi-label Learning in Extremely Large Label Spaces

  Invited Speakers include:Ed Chi,Mehryar Mohri

  Learning in the Presence of Strategic Behavior

  Invited Speakers include:Mehryar Mohri

  Presenters include:Andres Munoz Medina,Sebastien Lahaie,Sergei Vassilvitskii,Balasubramanian Sivan

  Learning on Distributions, Functions, Graphs and Groups

  Invited speakers include:Corinna Cortes

  Machine Deception

  Organizers include:Ian Goodfellow

  Invited Speakers include:Jacob Buckman,Aurko Roy,Colin Raffel,Ian Goodfellow

  Machine Learning and Computer Security

  Invited Speakers include:Ian Goodfellow

  Organizers include:Nicolas Papernot

  Authors include:Jacob Buckman,Aurko Roy,Colin Raffel,Ian Goodfellow

  Machine Learning for Creativity and Design

  Keynote Speakers include:Ian Goodfellow

  Organizers include:Doug Eck,David Ha

  Machine Learning for Audio Signal Processing (ML4Audio)

  Authors include:Aren Jansen,Manoj Plakal,Dan Ellis,Shawn Hershey,Channing Moore,Rif A. Saurous,Yuxuan Wang,RJ Skerry-Ryan,Ying Xiao,Daisy Stanton,Joel Shor,Eric Batternberg

  ,Rob Clark

  Machine Learning for Health (ML4H)

  Organizers include:Jasper Snoek,Alex Wiltschko

  Keynote:Fei-Fei Li

  NIPS Time Series Workshop 2017

  Organizers include:Vitaly Kuznetsov

  Authors include:Brendan Jou

  OPT 2017: Optimization for Machine Learning

  Organizers include:Sashank Reddi

  ML Systems Workshop

  Invited Speakers include:Rajat Monga,Alexander Mordvintsev,Chris Olah,Jeff Dean

  Authors include:Alex Beutel,Tim Kraska,Ed H. Chi,D. Scully,Michael Terry

  Aligned Artificial Intelligence

  Invited Speakers include:Ian Goodfellow

  Bayesian Deep Learning

  Organizers include:Kevin Murphy

  Invited speakers include:Nal Kalchbrenner,Matthew D. Hoffman

  BigNeuro 2017

  Invited speakers include:Viren Jain

  Cognitively Informed Artificial Intelligence: Insights From Natural Intelligence

  Authors include:Jiazhong Nie,Ni Lao

  Deep Learning At Supercomputer Scale

  Organizers include:Erich Elsen,Zak Stone,Brennan Saeta,Danijar Haffner

  Deep Learning: Bridging Theory and Practice

  Invited Speakers include:Ian Goodfellow

  Interpreting, Explaining and Visualizing Deep Learning

  Invited Speakers include:Been Kim,Honglak Lee

  Authors include:Pieter Kinderman,Sara Hooker,Dumitru Erhan,Been Kim

  Learning Disentangled Features: from Perception to Control

  Organizers include:Honglak Lee

  Authors include:Jasmine Hsu,Arkanath Pathak,Abhinav Gupta,James Davidson,Honglak Lee

  Learning with Limited Labeled Data: Weak Supervision and Beyond

  Invited Speakers include:Ian Goodfellow

  Machine Learning on the Phone and other Consumer Devices

  Invited Speakers include:Rajat Monga

  Organizers include:Hrishikesh Aradhye

  Authors include:Suyog Gupta,Sujith Ravi

  Optimal Transport and Machine Learning

  Organizers include:Olivier Bousquet

  The future of gradient-based machine learning software techniques

  Organizers include:Alex Wiltschko,Bart van Merri?nboer

  Workshop on Meta-Learning

  Organizers include:Hugo Larochelle

  Panelists include:Samy Bengio

  Authors include:Aliaksei Severyn,Sascha Rothe

  5、座谈会(Symposiums)NIPS 2017座谈会共4场(12月7日),其中3场有谷歌大牛参与。

  1)深化强化学习研讨会

  Deep Reinforcement Learning Symposium

  Authors include: Benjamin Eysenbach, Shane Gu, Julian Ibarz, Sergey Levine

  2)可解释的机器学习

  Interpretable Machine Learning

  Authors include: Minmin Chen

  3)元学习

  Metalearning

  Organizers include: Quoc V Le

  可以说,其中的每一个都是机器学习领域中深之又深的问题。诸位大神们对此的见解或许能刷新自己对机器学习的认识。

  哦,对了,另外一场座谈会是:智力的种类 - 类型、测试和满足社会的需求(Kinds Of Intelligence: Types, Tests and Meeting The Needs of Society)

  6、比赛(Competitions)1)对抗攻击防御

  Adversarial Attacks and Defences

  Organizers include: Alexey Kurakin, Ian Goodfellow, Samy Bengio

  2)IV竞争:分类临床可操作的基因突变

  Competition IV: Classifying Clinically Actionable Genetic Mutations

  Organizers include: Wendy Kan

  7、研讨会(Tutorial)NIPS 2017共有9场研讨会,谷歌只参加了其中之一:机器学习中的公平性(Fairness in Machine Learning)

  Fairness in Machine Learning

  Solon Barocas,Moritz Hardt

  二、有哪些大牛

  Samy Bengio

  谷歌大脑的研究科学家Samy Bengio是这届大会的程序委员会主席(Program Chair),同时也将参加元学习的研讨会(Workshop on Meta-Learning)以及组织“敌对攻击和防御”(Adversarial Attacks and Defences)的比赛。

  Workshop on Meta-Learning

  Panelists include: Samy Bengio

  Competitions

  Adversarial Attacks and Defences

  Organizers include: Alexey Kurakin, Ian Goodfellow, Samy Bengio

  Ian Goodfellow

  Ian Goodfellow是本届大会的领域主席。由他组织了“机器欺骗”(Machine Deception)的研讨会,此外他还将在一系列研讨会中做特邀报告/keynote 报告:

  Machine Deception

  Organizers: Ian Goodfellow

  Invited Speakers include: Ian Goodfellow

  Machine Learning for Creativity and Design

  Keynote Speakers include: Ian Goodfellow

  Machine Learning and Computer Security

  Invited Speakers include: Ian Goodfellow

  Aligned Artificial Intelligence

  Invited Speakers include: Ian Goodfellow

  Deep Learning: Bridging Theory and Practice

  Invited Speakers include: Ian Goodfellow

  Learning with Limited Labeled Data: Weak Supervision and Beyond

  Invited Speakers include: Ian Goodfellow

  除此之外,他还将和Samy Bengio、Alexey Kurakin等人共同组织“对抗攻击防御”(Adversarial Attacks and Defences)的比赛,这个比赛也是Ian Goodfellow所力推的。

  Fei-Fei Li

  作为国内诸多研究学子心目中的女神,李飞飞在NIPS上的活动相比于前面两位大神则显得有点少,她将出现在8日的这个研讨会中:

  Machine Learning for Health (ML4H)

  Organizers include: Jasper Snoek, Alex Wiltschko

  Keynote: Fei-Fei Li

  记着,中午12点整开讲。

  Geoffrey E Hinton

  Hinton在本次大会上甚至比李飞飞还要低调——只有入选的一篇论文,就是那个火爆一时的《Dynamic Routing Between Capsules》。然而,这篇论文甚至连oral都不是,只有一个5分钟的spotlight。

  Dynamic Routing Between Capsules

  Sara Sabour, Nicholas Frosst, Geoffrey E Hinton

  注意了,5日下午4: : 00,Hall A。为了聆听胶囊理论,估计这个会厅会挤爆头!

  去,要尽早!

  相关文章:

  DeepMind 16篇NIPS 2017论文,全部信息都在这里了 | NIPS 2017

  NIPS 2017即将开幕,哪些热点值得关注?

  大二少年的炼丹入门之路:专访NIPS 2017“Learning to Run” 比赛亚军黄哲威 | NIPS 2017

  NIPS 2017录用论文先睹为快!GAIR大讲堂NIPS清华专场精彩回顾

  NIPS 2017 腾讯AI Lab 八篇论文入选,含1篇Oral

  堪比春运!NIPS 门票一小时内!统统!卖完了!

  NIPS 2017美国四大名校霸屏,92篇论文抢先看 | NIPS 2017

  NIPS 2017录用结果全公布,清华北大10篇,BAT 4篇(附详细名单)

  如何提高NIPS论文命中率?这里有一份详细的分析

  原创文章,未经授权禁止转载。详情见转载须知。

整肠生胶囊多久一个疗程
孩子不爱吃饭吃什么食物好
小孩脸色发黄怎么回事
猜你会喜欢的
猜你会喜欢的